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* Assistant Professor in Computer Science at RPI | .
* RPI = Rensselaer Polytechnic Institute ; '

* Oldest technological university in the USA
* | teach:
* Al and Blockchain =
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* Introduction to Al ;-
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e Alin Fiction and Fact

* | research:
* Decentralized Systems (Web, Blockchain, Knowledge Graphs)
* Applied Al (Health Informatics and FinTech)

Background

* PhD in Computer Science from MIT

* Doctoral and Masters Supervisor: Tim Berners-Lee
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(Decentralized) Knowledge Graphs and Al

« Enhanced Search and Information Retrieval
« Natural Language Processing

« Recommendation Systems

* Fraud Detection and Risk Management

« Healthcare and Biomedical Applications

« Knowledge Management and Integration

« Explainable Al (XAl)

« Robotics and Autonomous Systems
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Web3/Blockchain and Al
» Enables decentralized data sharing.

* Incentive mechanisms for model training and inference.

» Decentralized Autonomous Organizations (DAOs) can streamline many computational
processes.

On the Web’ nobody knows you are a dogl On BIOCkChain, nObOdy knOWS you are an All
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Webl > Web2 > Web3

Web 1

“static web”

Read

Web 2

“dynamic web”

Read
Write

Interactable

Web 3

“semantic  “ownable
web” web”
Read Read
Write Write

Interactable Interactable
Meaningful Ownable
Verifiable
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Tim Berners-Lee’s TED Talk (2009)
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LINKED DATA

On the web, open license
Machine-readable data
Non-proprietary format
RDF standards

Linked RDF

IS YOUR DATA 5 + ¢
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Linked Open Data Cloud (2010)
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Linked Open Data Cloud (2014)

2014

Linked Datasets as of August 2014 @ @
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Linked Open
Data Cloud
(now)

https://lod-cloud.net/#diagram

The Linked Open ats Cloud from lod-<ioud.net m


https://lod-cloud.net/
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Limitations of Linked Open Data

* Data Quality

* Datasets may contain errors, inconsistencies, or outdated information, or be
incomplete which can affect the reliability of the linked data.

* Data Governance and Privacy
* There is a need to share data in a privacy-preserving manner
* Lack of robust access controls, and anonymization techniques to maintain

trust and mitigate risks
* Sustainability and Maintenance

* Relies on the willingness of data publishers to provide and maintain their
datasets
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What is a Knowledge Graph?
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What Decentralized Knowledge Graphs (DKG)
Enables

A DKG is a global knowledge graph comprising a shared set of verifiable assertions
that are not tied to any central authority (can be both public and private)

Smart contracts allow users to contribute to the knowledge graph in a secure and
incentivized manner.

* Knowledge sharing and collaboration
* Proper long-term sustainable data stewardship
* Ownership and Control of the resources in the KG

* Integration of advanced analytics
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Some of my DKG research

Scientific Knowledge Sharing

Collaborative Decentralized
Knowledge Graph Construction

Generating Smart Contracts for
Computable Knowledge Graphs

Accountable Bench-to-
Bedside Data-Sharing
Mechanism for Researchers;

Oshani Seneviratne, Deborah

McGuinness; Transactions on
Social Computing, 2023.

Swarm Contracts: Smart
Contracts in Robotic
Swarms with Varying
Behavior; Jonathan Grey,
Isuru Godage, Oshani
Seneviratne. IEEE Blockchain
Conference 2020.

Assessing Scientific
Contributions in Data Sharing
Spaces; Kacy Adams, Fernando
Spadea, Conor Flynn, Oshani
Seneviratne; Sci-K'23.

Decentralized Framework for
Collection and Secure Storage
of Google Street View Data:

Case Study; Sanjaya
Mallikarachchi, Bonnie Ho, lyad
Kanj, Oshani

Seneviratne and Isuru Godage;
IEEE GlobCon2023 and
ICCAR2023

Translating Clinical Decision Logic Within Knowledge Graphs to

Smart Contracts; William Van Woensel, Manan Shukla and,

Oshani Seneviratne ; Semantic Web solutions for large-scale
biomedical data analytics (SeWebMDA-2023)
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Incentlwzed Accountable

Research Data Sharing
Ecosystem as a DKG

Accountable Bench-to-Bedside Data-
Sharing Mechanism for Researchers;
Oshani Seneviratne, Deborah McGuinness;

Transactions on Social Computing, 2023.

Goals: Bench-to-Bedside Biomedical Research Scenario:

Data Standardization &
° Handle . Processing

Hypothesis &
“Researcher’s Study Design % m
Dilemma” 51 7 :

i -
* Reward =
Idea

Reproducible

Research Study Analysis

Research and Peer === . . . =0 AT ORI .

Verification
Standardized Data Reuse & Repurposing *
* Tokenization of
Research Rewards

Peer-Reviewed
Publications

Clinical Application

p
Cep \

2 —
o :
y * E -v .
1

Research Data
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Assessing Scientific Contributions in

Rewa rd i ng Re prOd UCi ble Data Sharing Spaces; Kacy Adams,

Fernando Spadea, Conor Flynn,

Research with the SCIENCE Index  oshaniseneviratne; sci-k'23.

SCIENCE
Capability-based
Intention-centric
Experiment-oriented
Networked
Collaborative

Expression

Application of the Data Sharing Ontology
based Decentralized Knowledge Graph

* Mechanism to reward researchers for their
data contributions

* Supplements the h-index

* To overcome the “cold-start” problem in
our data-sharing dApp, we bootstrapped
the SCIENCE-index with:

* Publication data from the Microsoft Academic
Graph and Semantic Scholar

* Data citations from DataCite
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Results (1)

Predicted (proxy SCIENCE-INDEX vs Actual h-

index
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SCIENCE-index vs. Career Length

Sciencelndex

careerLength

=
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Results (2)

We present an evaluation of two groups of researchers (from the Global
North and from the Global South) comparing their h-index to their SCIENCE-
index to assess the equity of the two indices

Researchers’ h-index Researchers’ SCIENCE-index

Researcher Location

density
density

Northem Hemisphere
{ Southen Hemisphere

WAL o e e Pl e

Mean South = 5.15
Mean North = 5.14

- Mean South =388 /e
Mean North

SCIENCE-index
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SCIENCE-Index Application Architecture \\‘_\

Scholar

e SCIENCE-index is persisted as a smart contract and is
exposed to a simple interface

______"—%n-
e Avresearcher inputs into the contract their Semantic Chamink l | "
SChOIar ID External
Adapter
. . (5 |
e The contract utilizes a custom oracle that retrieves an Function)
author’s career statistics from Semantic Scholar’s API V
Oracle + —
e Using the statistics, our linear model calculates the contract
researcher’s SCIENCE-index and retrains itself from the
new data
. . . | : SCIENCE-inde
o This keeps our index persistent and up-to-date Conract

Code: https://github.com/sharing-science

19


https://github.com/sharing-science

Swarm Contracts: Smart Contracts in Robotic

v Rensselaer
Swarms with Varying Behavior; Jonathan Grey,
Swa r m C O nt ra Ct S Isuru Godage, Oshani Seneviratne. IEEE

Blockchain Conference 2020.

* For collaborative application between agents Potential Applications
with various capabilities

* Create a system that is more robust through
decentralization and voluntarism

* Generalizable to different applications

* Incentivizes cooperative behavior over the
long-term

* Disincentivizes adversarial behavior over long-
term

Crowd-sourced Knowledge Graph Construction



Renssela.er . Decentralized Framework for
Collecting Data for Decentralized Collection and Secure Storage of

Google Street View Data: Case

Knowledge Graph with Smart S e e

Bonnie Ho, lyad Kanj, Oshani

CO nt ra CtS Seneviratne and Isuru Godage;

|
Ethereum falale P Deploys Contracts | Charger I IEEE GlobCon2023 and
Blockchain ICCAR2023

Contracts Google

Accepting
Publish via street view j Map
Users API
Cllent App
Interaction E on ROS
. Master

Retrievingimage
sequences

hg
>
»

S Private

— Co -

E e,‘:"é* Blockchain

< N Turtlebot with the Irr
£ 360 camera

A J

. Android Sending commands by the users e
App .

as Street View
Image blocks
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Knowledge Graph Utilization in Al Systems

* KGs provide structured, interconnected information that improves
data representation, context understanding, and interoperability.

* KGs can help in:

* Providing context for local data, helping to improve feature extraction and
data preprocessing steps by incorporating domain knowledge.

* Cleaning and validating the data by cross-referencing with the knowledge
graph, ensuring higher data quality and consistency.

23



») Rensselaer Different Learning Architectures

Local learning Central learning Federated learning Swarm Learning
Data

at edge E@}
@ (o) Data and
o parameter

at edge
0.‘ ’Q

Data and
parameter
@ § - {-ETL]:F central {a;]g
Parameter

Disconnected Cloud-based Sl
model with good Models are trained at “Democratic [and
Localized data accuracy, but at the edge; only Incentivized] Machine
and model. the cost of parameters are shared Learning” with both the
- privacy and and merged by a data and parameters at

other issues. central coordinator. the edge.
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Blockchain-based AI/ML Model Training and Inference

1) Deploy an initial model
2) Contributors submit data + deposit g comreetd
3) Contributors can get a reward after
x4
}

submitting good data
4) The model remains free to use for
inference




v hensselaer Incentivizing Quality Data

There are many ways to encourage contributors to submit good-quality data.

e . - . . r NOVICE CONTRIBUTOR
1. Gamified (non-financial, points + badges like Stackoverflow) @ L
2. Based on established theory in Prediction Markets
0 0 [ ] [ ] [ \
3. Deposit, Refund, and Take: Self-Assessment /£%% U T4,
F AR
Balances & Accuracy on Hidden Test Set
Our Simulation (PredictChain, Ledger journal 2024) 80.0%] —Curnheuzer
Assumption: “Bad Agent’ frequently adds incorrect N
data. é 79.5%
5]
* The model can still maintain accuracy. N .
« Honest contributors can still profit. LD oy
785%1 :
-0 0

Time (days)
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Food Knowledge Graph

Food BOT

Your question:

Send

https://foodkg.github.io/demo.html

PROTEIN INTAKE


https://foodkg.github.io/demo.html

Y HEALS

Bot: Hello Jennifer!

Jennifer: Suggest a good breakfast

with Eggs

Jennifer’s PHKG: Bot:
- 35years o Sid
- Female . Fea

« Cheese Puffs

* Hole in the Wal

Contessa's Breakfast Bread

Send

Robert’s PHKG:

65 years
Male
Diabetic

v HEALS

Bot: Hello Robert!

Robert: Suggest a good breakfast with

Eggs

Bot:
« [talian Breakfast Biscuit

« Farmer's Casserole

+ Scrambled Ne ork Breakfast Wrap
(South Beach Diet P2)

« Perfectly Poached Eggs
« Southern Eggs En Cocotte

« Rum Custard

g Send
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Behind the Scenes

-
»

Dietary Needs
& Preferences

l

( User
\

-
. N Expanded User
User Question > | Question
J
Food KG
. % v

Recipe Q O 0
Recommendations nowledge Base QA O{DO O‘c-)'o

J

User

Personal
Food Log

Chen, Yu, Lingfei Wu, and Mohammed J. Zaki. "Bidirectional attentive
memory networks for question answering over knowledge
bases." arXiv preprint arXiv:1903.02188 (2019).
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Ingredient Substitutions

Diet-Improvement Ingredient Substitution Heuristic (DIISH)

Implicit Semantics

Lard

Target Ingredient: Lard Substitute Ranking

FoodKG

1. \egetable Shortening

r 2. Margarine
[ 3. Bacon Fat
Substitutability Heuristic 4. Butter
Nutrition Nutrition and
Food Classification
ik Recipe Context Ingredient
Similarity Pairing Similari

FoodOn
Classes

W Word Embedding Similarity

Sola S. Shirai, Oshani Seneviratne, Minor E. Gordon, Ching Hua Chen, and Deborah L.
McGuinness. 2020. Semantics-Driven ingredient substitution in the FoodKG. CEUR
Workshop Proceedings 2721 (2020), 243-247.

Explicit Semantics

.~ USDA “\ ,” "FOODON Ontology
[ x Sov )
i Ingredient Nutrition , |
[ "
p Butter, Unsalted ! .
i : : Icow milk based food product |
[ ; '

Calories: 717 '

subClass

: Sodium: 11 mg : : T
' Total Fat 81g 1y I cow milk butter food product |
[ 1y
' "
i %+ TsubClass
' 1y
' (Y

butter (unsalted) |

.
~
’,

equivalentClass equivalentClass
Unsalted Butter Potato Salt
Mashed Potato Recipe

\
'
'
1
'
'
'
'
'
'
'
'
'
'
'
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Incentivizing Good Quality Data Entry to the FoodKG

BAKED BLISS

Ualaad By and Sell

* Blockchain-based mechanism

* Users are incentivized to submit good-quality
recipes.

* Deposit, Submit, and Refund & Reward model.

* Reward if the recipe is novel.

* (Novelty is determined using an
embedding/vector similarity mechanism.)

* Other users can buy the “rights” to publish the
recipe, just like an NFT. Code: https://github.com/Al-and-Blockchain/F23_BakedBliss



There are lots of cryptocurrency scams on the Web!

More than 320 transactions (with total value > 100K
USD) had already taken place before Twitter took down
the posts!

Can we figure out a way to flag these scam
addresses?

Yes, by analyzing the Transaction Graph.

Example pattern:

Scammers inject money into the scam address before
the scam event,

After some money is added, it is transferred through
multiple accounts to obscure the scammer’s identity.

' Rensselaer Analyzing Crypto Twitter / Social Media

& Tweet

«="  Joe Biden &
y’ JoeBiden

| am giving back to the community.

All Bitcoin sent to the address below
will be sent back doubled! If you send
$1,000, | will send back $2,000. Only
doing this for 30 minutes.

bc1gxy2kgdygjrsqtzq2n0yrf2493
P

Enjoy!

PM-1¢

witter Web Apr

2,375 Retweets and comments 1,739 Likes
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Integrative Blockchain Provenance Analyzer

« Use provenance to identify suspicious addresses.
« Does an effective job at quickly calculating a reasonable suspicion flag for a

selected address. . ; .
@ 5 =/ -1
© o
O
t5 & tl
) Maybe an exchange? - Sewy %, &
(.. t5 SENT
O.. v e ] ) SENT E
O SENT S
] OQO . & | St
) e .
t 2
tc 4
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Several Upcoming Web-related Conferences
« ACM Web Conference’25

* ACM Web Science Conference’25 D\
* ACM Web Search and Data Mining’25 & =

=

* International Semantic Web
Conference’24

ACM WSDM 2025

The 18th ACM International Conference on Web Search
and Data Mining

34
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Key Takeaway and Q&A

There are a lot of research
potentials to explore the
synergistic combinations of the
Web, Knowledge Graphs and Al.

Any questions? Please feel free to contact me:

senevo@rpi.edu

Linking the
World’s
Information

Essays on

Tim Berners-Lee’s
Invention of the
World Wide Web

Oshani Seneviratne, James Hendler (Editors)

35
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